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MR cellular imaging is a relatively new and emerging technique aimed at guiding 
development of effective cell therapies, including progenitor cells, stem cells, and 
immunotherapeutic cells. It provides the opportunity to non-invasively map grafted cells in 
living animals and humans, to observe their migration and, more importantly, to link functional 
measures with the presence of the cells in target organ. This technique also addresses the safety 
issue by monitoring potential uncontrolled proliferation or dispersion to unwanted areas. At the 
present time, MR cellular imaging now allows whole-body scanning capability at a resolution 
approaching the size of individual transplanted cells (1, 2), while allowing repeated analysis at 
multiple time points.  

Numerous techniques have been developed to magnetically label cells prior to grafting, 
most of them utilizing dextran-coated superparamagnetic iron oxide nanoparticles (SPIOs). 
SPIOs can be used to label cells from multiple species, simply by 24-48 hours of incubation in 
conjunction with transfection agents (3) or, as has been recently has been shown, by instant 
labeling using magnetoelectroporation (4), allowing for non-invasive detection of transplants 
using MRI. Most recent studies have employed Feridex as SPIO, as it is a commercially-
available and FDA-approved source of dextran-coated SPIO. Gd-chelates have also been used 
(5-7), albeit in much less extent, owing to the reduced sensitivity of the paramagnetic label once 
internalized in cells, forcing the use of T2(*)-weighted hypointensity imaging at higher field 
strengths. A large number of gadolinium molecules are needed in each cell to allow a robust in 
vivo visualization, although some strategies, such as metallofullerines (8), have been described to 
increase relaxivity and therefore could reduce the number of paramagnetic molecules needed for 
cellular imaging. Daldrup-Link (9) demonstrated that twice as many cells labeled with 
gadopentate dimeguline liposomes were needed for detection by MRI compared to ferumoxides, 
P7728 liposomes or polysaccharide nanoparticles.  
  Most interest to date in the use of pre-labeled cells for cellular MR imaging has been in the 
use of stem cells. The ex vivo MR analysis of the global or local distribution of transplanted stem 
cells is now a routinely used method that complements conventional histological techniques. 
This method allows for 3D whole body or organ imaging and presentation of data in any desired 
anatomical plane—features that are impossible or extremely difficult to achieve using 
conventional microscopy. Post-mortem (ex vivo) imaging is not subject to the MR technique 
limitations associated with living organism imaging (limited acquisition time or motion 
artifacts); thus, the spatial resolution, signal-to-noise ratio, and sensitivity are much better. The 
MRI cell tracking technique, however, offers far more valuable data when used in a living 
organism, allowing for dynamic evaluation of cell migration. From a clinical perspective, it also 
offers a non-invasive means of monitoring cell-based therapy that enables determining the cell 



fate without the need for tissue biopsy. Brain and cardiac disorders have received so far the most 
attention for the potential application of MRI stem cell tracking techniques (10).  
 Monitoring immune cell trafficking is the second major application of MR imaging of 
cell migration. It is likely to have a significant future impact on our understanding of the in vivo 
immune response. Anderson et al. have demonstrated targeted trafficking of myelin—sensitized 
T cells into the spinal cord of animals with experimental allergic encephalomyelitis (11). 
Antigen-specific cytotoxic T cells have been found to specifically home to OVA+ (12) and 
HER2/neu tumors (13). T cells from animals that rejected OVA+ tumors have been purified, 
SPIO-labeled, and re-injected in OVA+ tumor-bearing animals (14). In this case, specific tumor 
acumulation could also be observed. MR monitoring of cytotoxic T cell migration into the 
diabetic pancreas has been pursued in order to gain insight into the mechanisms underlying 
autoimmune diabetes (15, 16). SPIO-labeled cells behave clearly different from naked SPIO 
particles when injected intravenously; Endorem-labeled hematopoietic bone marrow cells were 
found to rapidly home to bone marrow following intravenous injection whereas just the Endorem 
particles by themselves do not (17). 
 While MR imaging is rapidly gaining ground for cellular imaging, other techniques also 
possess the potential for cellular imaging in the living organism. Especially studies on 
hematopoietic stem cell transplantation have used fluorescent dyes, such as PKH26, to pre-label 
cells in vitro to allow in vivo detection of transplanted/infused cells by means of optical imaging 
(18-20). However, this approach does not allow deep tissue penetration and therefore is limited 
to easily accessible targets. Alternatively, invasive procedures, such as a craniectomy, are 
required to allow access of the imaging probe to the anatomical structure of interest (18). 
Exposure to light to visualize the fluorescent dyes can also cause phototoxicity (21) killing the 
labeled cells complicating the serial assessment of these cells by optical imaging methods. The 
attractiveness of this approach lies in the commercial availability of fluorescent dyes for cellular 
tacking that are widely used on a variety of cell types and provides a powerful approach to study, 
for instance, cellular differentiation by combining the fluorescent marker for the identification of 
transplanted cells with immunohistochemical methods.  
 A promising new development in cellular imaging consists of the possibility to detect 
bioluminescence from deep tissue structures (22). Typically, a gene encoding for luciferase, is 
engineered into cells (23). The substrate luciferin (supplied through i.v. injection) is oxidized by 
luciferase in the presence of ATP and oxygen, producing a photon in the course of this 
bioluminescent reaction that can be detected by very sensitive cameras, thus allowing repeated in 
vivo cellular imaging (24). A drawback of bioluminescent imaging is that the scattering of light 
by tissue limits the spatial resolution of this technique considerably compared to MRI. In 
addition, clinical or whole body large animal imaging is, at present, not feasible, and pigmented 
strains are less suitable for bioluminescent imaging, raising ethical issues would the technology 
allow imaging in humans. Still, bioluminescent imaging has allowed Kim and colleagues (25) to 
track the in vivo migration of neural stem cells from the contralateral hemisphere to the site of 
lesion in mice with middle cerebral artery occlusion whilst allowing a corroboration of these 
results by histology. Migration of neural stem cells into gliomas across hemispheres has also 
been visualized (26), and the trafficking of immune cells has been monitored as well (27, 28). 
The potential to track a particular type of cell, such as a neural stem cell or immune cell, by 
bioluminescence, whilst using the same techniques to detect light emitted at a different 
wavelength from distinct reporter genes to study gene expression in these cells clearly will 
provide interesting novel avenues to study the basic biology of transplanted cells by combining 



molecular (gene expression) and cellular imaging (location of cells).  
 Various other techniques, such as positron emission tomography (PET) and single photon 
emission tomography (SPECT), also have the potential to visualize cells and cell migration  in 
vivo. The current spatial resolution of both PET and SPECT is at least 10 times lower than that 
observed with MRI, but it is the higher specificity of radioligands that conveys the attractiveness 
of these techniques to study transplanted cells in vivo (29). For instance, Jacobs et al (30) have 
shown that  engineering of reporter genes into cells in vitro allows the identification of these 
cells by means of detection of the transgene expression in vivo. Hence, the reporter molecules 
could serve as a surrogate marker of the cells to be imaged and no prior loading of the cells with 
a contrast agent would be required as radioligands are small enough to cross the intact blood-
brain barrier. Differential expression of proteins/receptors, such as the transferrin receptor, on 
particular cells can also serve as a marker to identify these transplanted cells in vivo (31, 32). 
Although both PET and SPECT provide excellent approaches to study specific molecular targets 
and determine cellular differentiation or metabolic consumption, the repeated assessment of 
animals with radioligands raises issues regarding the safety of this approach for longitudinal 
studies and its translation into a clinical setting. The pre-labeling of cells in vitro with 
radioligands prior to in vivo imaging (as exemplified by MR cellular imaging) is also less likely 
to be apposite for the longitudinal tracking of cells due to the short half-life of radioligands. 
Nonetheless, Chin et al. (33) have demonstrated that it is possible to visualize mesenchymal stem 
cells by SPECT over a period of 14 days after pre-incubation of cells with 111In oxine.  
Kraitchman et al. (34) clearly demonstrated the much higher sensitivity of detecting 
mesenchymal stem cells with 111In oxine as compared to labeling with Feridex; estimated 
numbers of between 50,000-100,000 cells could be detected as hot spots on SPECT/CT images 
but not on the MR images (using clinically applicable imaging parameters).  Another cell 
tracking approach is the use of specific reporter markers in transplanted cells that are detectable 
by repeated administration of a radioligand thus providing  an attractive approach to monitor 
immune (35, 36) or stem cell (37) graft survival and function over extended time periods. 
 However, the need for on-site synthesis of radioligands limits the wider applicability and 
practicality of PET and SPECT as cellular imaging techniques, whereas limits on tissue 
penetration and need for genetic engineering will complicate translation of optical imaging and 
bioluminescence into clinical applications. With MR imaging, it is impossible to differentiate 
live from dead cells, and label dilution by cell division is a significant limitation. But the wider 
availability of MRI scanners in both clinical and pre-clinical settings strengthens the applicability 
of cellular MR imaging as a translational technique that can be easily implemented in many 
centers. Given the high-resolution of MR imaging at near cellular levels, however, it is the 
unique complementary information that can be derived from the different imaging approaches 
that highlight their importance in cellular imaging. This is well illustrated by the first clinical 
trial that has used magnetically labeled cells (38): MR imaging was superior to 111In-oxine 
scintigraphy in detecting the number of lymph nodes that Endorem-labeled dendritic cells 
migrated to following intranodal injection in a single regional node, and was able to accurately 
asess whether the nodes were hit or missed following US-guided injections. At the other hand, 
only scintigraphy allowed accurate quantification of migrated cell numbers, which is important 
for predicting sufficient T cell activation. 
 For cellular MR imaging, a few new approaches were introduced last year that may offer 
opportunities for improved monitoring of cell migration. Gilad et al. in our group have developed 
an MR reporter gene, that is unique in the sense that it is an artificial reporter gene providing 



endogenous contrast without the need for administration of contrast agents (39). Using chemical 
exchange saturation transfer (CEST) imaging, images can be created using specific off-radiation 
pulses that null the signal of amide protons in the reporter gene. By subtracting and correcting 
the anatomical images without the specific pulse, “hot spot” images can be created that have now 
allowed accurate detection of cell distribution in vivo. Succesful development of MR reporter 
genes would have the same advantages that bioluminescent and PET imaging have when using  
reporter genes: 1) no decrease of the sensitivity of detection following cell division (caused by 
dilution of label); 2) the ability to discriminate between live and dead cells (as only live cells 
continue to produce the reporter); and 3) the potential to place reporters under specific promotors 
thus allowing the detection of cells only under certain activation or differentiation conditions (for 
instance, the visualization of mesenchymal stem cells only when differentiated into 
cardiomyocytes). Cohen et al. (40) Genove et al. (41) have used a different approach that still 
relies on metal-based relaxation changes, namely the use of a ferritin reporter gene, synthesizing 
its own iron oxyhydroxide core, that could possibly also be used for cell tracking. 
 Finally, 19F-based “hot spot” MR imaging has emerged from the background. Perhaps 
largely unrecognized, fluorine-19 was one of the earliest applied MR contrast agents (42). 
Ahrens et al. (43) have used large particles containing many 19F atoms to label dendritic cells, 
and demonstrated that organ trapping in the liver, spleen and lungs could be readily visualized. 
As compared to 1H imaging and using metal-based contrast agents, 19F-based imaging offers 
several advantages but may also have some pitfalls, which have recently been discussed in 
further detail (44). Thus, there are many ways to monitor cell migration. It is too early to tell 
which of all the described techniques will become the future technique of choice, but it is clear 
that there is an array of possibilities with the optimal choice depending on the specific cell 
tracking application.  
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